organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ashley T. Hulme* and Derek A. Tocher

Christopher Ingold Laboratory, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, England

Correspondence e-mail: a.hulme@ucl.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.002 Å Disorder in main residue R factor = 0.036 wR factor = 0.090 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-Fluorouracil-dimethyl sulfoxide (1/1)

The title compound, $C_4H_3FN_2O_2 \cdot C_2H_6OS$, crystallizes in the monoclinic space group $P2_1/c$, with one molecule of 5-fluorouracil and one molecule of dimethyl sulfoxide (DMSO) in the asymmetric unit. The crystal structure contains hydrogen-bonded ribbons of alternating 5-fluorouracil and DMSO molecules which stack, forming non-interacting layers parallel to the (100) planes.

Comment

In the course of a polymorph screen performed on 5-fluorouracil three solvates were discovered; the crystal structure of one of these solvates is reported here. The title compound, (I), crystallizes in the space group $P2_1/c$ with one molecule of 5-fluorouracil and one molecule of dimethyl sulfoxide (DMSO) in the asymmetric unit.

The S atom in the DMSO molecule is disordered over two sites, with a 95:5 occupancy ratio. The minor site (S20') exhibits the opposite pyrimidisation of the DMSO molecule, compared to the major site (S20). Fig. 1 shows the asymmetric unit, with only the major sulfur position shown.

Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved View (Watkin *et al.*, 1996) of the asymmetric unit of the title compound, with 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.

Received 1 September 2004 Accepted 8 September 2004

Online 18 September 2004

Two conventional hydrogen bonds, of the type $N-H\cdots O$, occur in the structure. The O atom of the DMSO molecule acts as a hydrogen-bond acceptor for two symmetry-related 5-fluorouracil molecules (Table 1).

The crystal structure contains hydrogen-bonded ribbons of alternating 5-fluorouracil and DMSO molecules (Fig. 2). These ribbons stack, forming form non-interacting layers parallel to the (100) planes.

Experimental

5-Fluorouracil was obtained from the Aldrich Chemical Company Inc. The crystals of the title compound were grown by vapour diffusion of diethyl ether into a saturated solution of 5-fluorouracil in DMSO.

Crystal data

 $C_{4}H_{3}FN_{2}O_{2} \cdot C_{2}H_{6}OS$ $M_{r} = 208.21$ Monoclinic, $P2_{1}/c$ a = 9.8831 (10) Å b = 10.8128 (11) Å c = 8.6842 (9) Å $\beta = 107.397 (2)^{\circ}$ $V = 885.58 (16) Å^{3}$ Z = 4

Data collection

Bruker SMART APEX diffractometer Narrow-frame ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.903, T_{max} = 0.962$ 7672 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.090$ S = 1.072127 reflections 140 parameters H atoms treated by a mixture of independent and constrained refinement 2128 independent reflections 1922 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.3^{\circ}$ $h = -13 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -11 \rightarrow 11$

 $D_v = 1.562 \text{ Mg m}^{-3}$

Cell parameters from 3031

Mo Ka radiation

reflections

 $\theta = 2.9 - 28.0^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$

T = 150 (2) K

Block, colourless $0.29 \times 0.21 \times 0.11 \text{ mm}$

$$\begin{split} w &= 1/[\sigma^2(F_o^2) + (0.0401P)^2 \\ &+ 0.5099P] \\ \text{where } P &= (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\text{max}} < 0.001 \\ \Delta\rho_{\text{max}} &= 0.40 \text{ e } \text{\AA}^{-3} \\ \Delta\rho_{\text{min}} &= -0.54 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1···O20	0.79 (2)	2.04 (2)	2.838 (2)	175 (2)
$N3-H3\cdots O20^{i}$	0.82(2)	1.97 (2)	2.790 (2)	173 (2)
$N1 - H1 \cdot \cdot \cdot S20'$	0.79 (2)	2.56 (2)	3.266 (8)	149 (2)
$N3\!-\!H3\!\cdots\!S20^i$	0.82 (2)	2.89 (2)	3.666 (1)	157 (2)

Symmetry code: (i) $1 - x, \frac{1}{2} + y, \frac{1}{2} - z$.

The S atom in the DMSO molecule is disordered over two sites and was modelled anisotropically, with site occupancy 95:5. The S–O and S–C distances in the major and minor components were restrained to be equal within ± 0.01 Å. All H atoms on 5-fluorouracil were located in a difference map and were refined isotropically; N–H = 0.79 (2) and 0.82 (2) Å, and C–H = 0.94 (2) Å. The H-atom positions on the methyl group were idealized and refined using a riding model [C–H = 0.96 Å and $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C})$].

Figure 2

Hydrogen-bonded ribbon motif, made up of alternating 5-fluorouracil and DMSO molecules. Hydrogen bonds are shown as dashed lines.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *SHELXL*97.

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting 'Control and Prediction of the Organic Solid State'.

References

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.